Labtainers 1

The OSSEC Host Intrusion Detection System

1 Overview

This exercise provides hands-on experience with the OSSEC host-based intrusion detection system (IDS).
This IDS is commonly used and serves as the core of commercial IDS products !. Like most IDS products,
it applies a set of rules to identify attacks on computers. And as with many host-based IDS systems, OSSEC
relies to a large extent on logs messages captured by the underlying operating system.

The lab includes the following objectives:

1.1

Configure OSSEC agents for client computers, i.e., those whose activity will be monitored by the
OSSEC server.

Generate log-based events and observe resulting alerts generated by OSSEC.

Observe the effects of “active responses” to system events, e.g., disabling traffic from an offending
source.

Configure a client agent to alert on changes to the ports that the computer is listening to.
Define a rule to alert on web server access to a particular URL.
Explore limitations and complications associated rule-based IDS.

Consider system security attack surface trade-offs related to introducing SMB of privileged code,
some of which consumes whatever an attacker feeds your computers.

Background

This lab assumes the student has some introduction to IDS systems and some familiarity with Unix logging.

2 Lab Environment

This lab runs in the Labtainer framework, available at http://nps.edu/web/c3o/labtainers. That site includes
links to a pre-built virtual machine that has Labtainers installed, however Labtainers can be run on any Linux
host that supports Docker containers.

From your labtainer-student directory start the lab using:

labtainer ossec

A link to this lab manual will be displayed.

"https://wazuh.com/

Labtainers 2

3 Lab topology

In addition to an OSSEC server, this lab includes a workstation and a web server.

Figure 1: OSSEC Lab Topology

4 OSSEC Operation

Details on OSSEC can be found at https://www.ossec.net/docs/index.html. The OSSEC
server receives log entries from monitored computers via OSSEC agents that run on each monitored com-
puter. A computer will not be monitored unless it has an agent installed and configured to communicate
with the OSSEC server. This communication requires:

o The client agent is registered on the OSSEC server and a cryptographic key is generated for the client.
Both of these steps occur using the manage_agents command on the server.

e The key is imported into the agent on the client, using the manage_agents command on the client.
o The IP address of the server is defined in the client /var/ossec/etc/ossec.conf file.
e The ossec service on the client and the server are each restarted.

Once those steps are complete, the server will begin to monitor the client based on log entries sent from the
client to the server. The set of client logs to be monitored are defined in the ossec . conf file on the client.
That file has a broad initial set of log files defined, though some of the log names may require modification
as we will see in this lab.

https://www.ossec.net/docs/index.html

Labtainers 3

What the server does with received log messages is primarily defined in a set of rules located in the server
/var/ossec/rules directory. Server actions include generating alerts and causing active responses,
e.g., directing a client to temporarily disable network traffic from an offending source.

Log messages are parsed and categorized based on decoding rules defined in

/var/ossec/etc/decoder.xml

OSSEC includes decoders for most common log formats. The decoders assign identifiers to different types of
log messages, and these identifiers may then be named in rules. For example, a decoder may assign selected
messages generated by a web server as being of type web-accesslog. A rule might then define an alert
to be generated if it finds a message of type web—accesslog to contain a character string indicative of an
SQL injection attack.

5 Tasks

5.1 Configure OSSEC to monitor the clientl workstation

The configuration files for each agent in the lab have been preconfigured to identify the server IP address. So
you only need get keys into each agent to get them talking with the server. Most OSSEC operations require
use of sudo, so you might as well just sudo su”.

e On the server, run the /var/bin/manage_agents command to define an agent for the client1
computer and to export a key for that client. (Just run the command, you’ll figure it out.)

e Copy the key that was generated on the server.

e On the clientl computer, run the manage_agents command and import the key by pasting it
when prompted.

e Use systemctl restart ossec on the client and the server.

5.2 Cause and observe alerts

Out of the box, OSSEC monitors many different security relevant events, some of which get reported as
alerts in the /var/ossec/logs/alerts/alerts.log file in the server. You’ll be looking at that
file a bit, so tail it in a new terminal:

o At the Labtainers terminal (labtainer-student), create a new terminal for the OSS computer:
moreterm.py ossec ossec
e On the new terminal:

sudo su
tail -f /var/ossec/logs/alerts/alert.log

Once you are monitoring alerts, create one. Go to the clientl computer, which may still be in a sudo shell,
i.e., with the root # prompt. Type exit at that prompt, or sudo su if not yet in a sudo shell. Switch back
and forth from a sudo su shell. Note the alerts in the OSSEC alerts.log. Those of you with Unix experience
may recognize the alerts as being little more than system log messages, which they are.

Labtainers 4

5.3 Add the Web server and test log monitoring

Use the manage_agent s command on the server to add the web server agent. Then use the manage_agent
command on the web server to import the generated key.? Restart the ossec service on the OSSEC server
and on the web server, noting that the service name on the web server is ossec-hids.

You should have seen alerts in the alert log for each of these actions. Now go to the client] computer and
ssh to the web server, providing a bogus password. Note the alerts. Again, these are triggered by standard
Unix log messages, in this case generated by the SSH daemon.

5.4 Active responses

Repeat your failed attempt to ssh from clientl to the web server. Use ctl-C to break out the first failed
password attempt to speed things up (you are looking to run the ssh command multiple times). And keep
repeating it until the ssh command just hangs and you see an alert such as:

% Alert 1619194381.6291: mail - syslog,sshd,authentication_failures,
2021 Apr 23 16:13:01 (webserver) 172.0.0.4->/var/log/secure

Rule: 5720 (level 10) —-> 'Multiple SSHD authentication failures.’

Src IP: 172.0.0.3

The rule defining this alert assigns its importance as “level 10, and any level over 6 will trigger an active
response. You can see the active response definitions within the ossec.conf file on the server. The
response is to alter the iptables on the web server to block all traffic from client1. You can observe this using
iptables -L on the web server, assuming you are quick enough?. The network blocking is set for 10
minutes by default, but we’ve changed that to 1 minute for this lab.

5.5 Monitor chages to command output

So far we’ve looked at OSSEC monitoring of log file entries. The IDS also lets you monitor the output of
defined commands. In this section, you will configure OSSEC to generate alerts if there are any changes
to the network ports listened to by the web server. The first step is to tell OSSEC on the web server about
the command to monitor. In this example, you wll monitor output of the net stat command. Enter this
command on the web server:

netstat -tan |grep LISTEN|grep -v 127.0.0.1

The output shows which network ports are currently being listened to by the web server. Your goal is
to generate alerts when that output changes. Edit the web server ossec.conf file. Note the different
localfile definitions. Add anew localfile entry at the end of the file, just above the last line.

<localfile>
<log_format>full_command</log_format>
<command>netstat -tan |grep LISTEN|grep -v 127.0.0.1</command>
<frequency>5</frequency>

</localfile>

Note the lack of an s on the end of this command on the web server. Command syntax varies between the Ubuntu configuration
of OSS (on the client) and the CentOS configuration on the web server.

3iptables is a Linux function for filtering network traffic. See the iptables2 lab and/or user “man iptables” to learn more about
their use

Labtainers 5

The log_format entry tells OSSEC you are defining a command that it is to periodically run. The
command entry is the command you want it to run. And the frequency is how often, in seconds, that you
want to run the command. After you restart the ossec—hids service, OSSEC will start to periodically run
that command and send the output to the server.

Now, on the server, we need a rule to monitor that output. There already is such a rule, which you can
see in the file at

/var/ossec/rules/ossec_rules.xml

In that file, find rule 533, which is reproduced below. The rule format definitions can be found in the OSSEC
web pages.

<rule id="533" level="7">
<if sid>530</if_ sid>
<pcre2>ossec: output: ’‘netstat -tan</pcre2>
<check_diff />
<description>Listened ports status (netstat) changed
(new port opened or closed) .</description>
</rule>

This rule can be read as follows: The id is an arbitrary number that identifies the rule. The level is 7, which
is high enough to generate an alert. Rule classifications are characterized at: https://www.ossec.
net/docs/docs/manual/rules-decoders/rule-levels.html.

The i f_sid entry reflects the OSSEC rule chaining strategy. It says to consider this rule only if the event
already matched rule id 530, which is a rule that identifies output from monitored commands. The pcre2
entry identifies which command output to evaluate, in this case, output from the netstat command defined
to run on the web server*. The check_diff entry tells OSSEC to generate alerts when the monitored
messages change.

Close the file and restart the ossec service. Then go to the web server and use the net cat command to
listen to some arbitrary port, e.g.,

nc -1 22345

You should see a corresponding alert. Then stop netcat using ctrl-c. Note another alert, this time because
the port was not longer being listened to. Recall the frequency of our command output generation is every 5
seconds. In a real deployment, you may wish to reduce the frequency so that the web server service can be
updated and restarted without generating alerts. On the other hand, the lower the frequency, the more time
rouge software has to listen to a port without being detected.

5.6 Monitor web resource access

In this section, we’ll create rules to monitor access to a specific web resource based on web log entries. The
first step is to make sure our web logs are forwarded to the server.

“pere2 is a “regular expression” syntax. This simple example just does a string match. Use “man pcre” to learn more, and
checkout regexone.com for a tutorial.

https://www.ossec.net/docs/docs/manual/rules-decoders/rule-levels.html
https://www.ossec.net/docs/docs/manual/rules-decoders/rule-levels.html

Labtainers 6

5.6.1 Log locations

Recall that log locations are defined in the client’s ossec. conf file. Open that file on the web server and
find the entry for the web server, which is apache. You will see two entries, one for the access log and one
for the error log. Neither match our installation, which puts the logs in /var/log/httpd. Alter the 2
entries to reflect the log locations. Then restart the ossec-hids service.

You can confirm the agent is processing the expected logs by viewing the /var/ossec/logs/ossec.

file.

5.6.2 Rules testing

OSSEC provides a tool to help create and test new rules, and we’ll use this tool to help understand the
structure of the rules chains. At the client] workstation, issue the following web request from the command
line>:

curl 172.0.0.4
At the web server, tail the access.log:
tail -f /var/log/httpd/access.log
At the OSSEC server start the ossec—1logtest program in verbose mode:
/var/ossec/bin/ossec-logtest -v

This program will consume a log entry provided as standard input, and it will display its processing steps
and any alerts that would have been generated had the lab entry been real. Copy the log entry from the web
server’s access_log and paste it into the server window where the logtest program is running. Observe the
output.

The first phase simply repeats the log entry. The second phase reflects the results of decoding per
the /var/ossec/etc/decocder.xml file. In this example, we see the decoder has decoded this as
a web-accesslog, and it identifies a set of values defined for that log type, including the success of
the GET command, which is 200 (successful). The decoder assigns this decoding a type of web-1og,
(unfortunately not reflected in the tools output.) Phase 3 is the rules processing.

OSSEC rules processing for this example can be summarized as: Start at the lowest numbered rule and
find the first match. The “rule 4” in this example was found in the rules_config.xml file. It then looks
at rules having a category of web—1o0g, which includes rules defined in the web_rules.xml file, where
it finds a match with rule ID 31100. It then searches for rules that are a “child” of rule 31100, i.e., those
with an 1 f_sid of 31100. Again, it searches in order until it finds a match. In this case the match is rule ID
31108, which represents itself as “Ignored URLs (simple queries)”. It then looks for a child of 31108 that
matches the log entry. We see it tried rule 31103 and rule 31509, but did not find a match and thus halted
with rule 31108 as the best match. Since the rule has a level of 0, it is ignored and no alert is generated.

For our example purposes, that rule chain is fine because we don’t care if that particular web page
is accessed. Our focus will be on access to the 172.0.0.4/plan.html page, (those of you who’ve
performed the snort lab will recognize these web pages). Go back to the client workstation and use curl to
retrieve the plan.html page. Look at the web server log entry and consider how we can identify log entries
reflecting access to the plan.html page. Obviously we can just look for that string. So we’ll create a new
rule that looks for that string.

SThere are several ways of making web requests, including curl, wget and browsers. For most of this lab, please use curl. You’ll
see why toward the end.

log

Labtainers 7

In order for our new rule to even be considered, it will have to be a child of rule 31108. Though we may
want to make the rule a child of 31100, we cannot because the OSSEC rules algorithm will always match
the 31108 first. (OSSEC prescribes that you not modify the existing OSSEC rules and follow the convention
of putting new rules in the local_rules.xml file with rule ID > 100000). Note this is a non-trivial
constraint because rules are searched in order of rule ID.

Open the 1local _rules.xml file and add this rule:

<rule id="140234" level="7">
<if_sid>31108</if_sid>
<url_pcre2>plan.html</url_pcre2>
<description>Accessed the business plan.</description>
</rule>

Then re-run the ossec-1logtest (use ctlr-c to break out of a previous use of the program and then start
the program again.)

Once you’ve tested the rule and see that it works, restart the ossec service on the server and issue the
curl request from the workstation again to confirm the alert appears in the alerts.log.

5.6.3 Event coverage

The new rule generates an alert when the plan.html resource is successfully accessed. But does it always?
Alter your query to: 172.0.0.4/plan.html?. Do you seen an alert? The question mark causes the
rule parsing to no long consider this log entry a simple query. Run the log entry in the logtest program
and view the processing. Note the selected rule is 31100, which we’ve seen before. To handle non-simple
queries, we’d like a rule that is a child of 31100. OSSEC lets us make a rule that is a child to multiple other
rules by including a comma-separated list of IDs in the i f_sid field. Make that change to the new rule and
test it.

5.6.4 Failed attempts

What about when someone tries and fails to access the plan? In other words, could we alert if it appears
that someone is using brute force to try to find the business plan? At the client, try to retrieve this resource:
172.0.0.4/plan9.html. Notice how no alert is generated. Go back to the logtest and view the processing of
the new access log entry.

Create a new rule to generate an alert that reports the following when a failed attempt is made to access
any resources with the string plan in the URL.

Attempt to access the business plan.

To complete this lab, you must test your new rule along with the previous rule and demonstrate the following
by using curl at the clientl:

e A query forplan.html or plan.html ?generates the “Accessed the business plan” alert.
e A query forplan9.html generates the “Attempt to access the business plan” alert.

e A query for about .html does not generate any alert.

Labtainers 8

5.7 Completeness (i.e., rat holes)

Now that we have our web content rules in place, try one more experiment. Instead of using curl, use
wget on clientl to retrieve the resources in the list of queries above, and observe the alerts. What is
missing? Use the logtest program to observe the rules processing on the log entry that failed to create the
anticipated alert. You need not correct the problem for this lab. But do make note of this property of rules-
based bolt-on security mechanisms: You never know when you are done. This is often true when trying to
protect systems using IDS, anti-virus, and rules-based “mandatory access controls”.

5.8 Effects on system security

On the client] workstation, go to the /var/ossec/bin directory and view the directory content. Use ps to see
which ossec program run as root:

ps aux | grep ossec

The ossec-logcollector program is 167KB, without libraries, which can be seen using the ldd pro-
gram:

1dd ossec-logcollector

Then go to the server computer and view its binaries and note which ones run as root.

While OSSEC does separate some processing to the non-root os sec user, much processing is still per-
formed by root, and this includes collection of logs whose content may be determined by arbitrary external
entities.

Any system contemplating use of an IDS should weigh the trade-offs associated with introducing large
amounts of privileged code into their systems.

5.8.1 Abuse of active responses

Another system security consideration is the potential for abuse of active responses. For example, how might
an attacker cause denial of service, preventing clientl from accessing the web server, just by causing some
non-privileged program to run on client1? Or consider the case of an attacker having non-privileged access
to clientl who would like ten minutes of unobserved interaction with client1? If clientl were the source of
numerous failed ssh attempts to the OSSEC server itself, what would be the result?

6 Submission
After finishing the lab, go to the terminal on your Linux system that was used to start the lab and type:

stoplab

When you stop the lab, the system will display a path to the zipped lab results on your Linux system. Provide
that file to your instructor, e.g., via the Sakai site.

This lab was developed for the Labtainer framework by the Naval Postgraduate School, Center
for Cybersecurity and Cyber Operations under sponsorship from the National Science Foundation
Award Number 1932950. This work is in the public domain, and cannot be copyrighted.

	Overview
	Background

	Lab Environment
	Lab topology
	OSSEC Operation
	Tasks
	Configure OSSEC to monitor the client1 workstation
	Cause and observe alerts
	Add the Web server and test log monitoring
	Active responses
	Monitor chages to command output
	Monitor web resource access
	Log locations
	Rules testing
	Event coverage
	Failed attempts

	Completeness (i.e., rat holes)
	Effects on system security
	Abuse of active responses

	Submission

